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I. Phys. A: Math. Gen. 26 (1993) M)9-630. Printed in the UK 

A dynamical group SU(2,2)  and its use in the wc-Kepler 
problem 

Twhihiro Iwai 
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-01, Japan 

Received 30 June 1992 

Abstract. It is widely known that the Kepler problem admits SU(2,Z) as a dynamical 
group. This article aims to show that SU(Z,2)  is also a dynamical p u p  for the 
bac-epler problem, a generalization of the Kepler problem. It is already known that 
the symmetry groups for the bac-Kepler problem are S0(4), S00(1,3), and E(3) ,  
according to whether the energy is negative, p i t i ve ,  or zero. It is shown in this article 
that the double mver of the respective symmetry groups, SU(2) x SU(2), SL(2, C), and 
SU(2) K R3, a semidireet product, are realized as subgroups of SU(2,Z) .  Iswnergetic 
orbit spaces are also studied, which are defined to be quotient manifolds of the respective 
energy manifolds by the respective Hamiltonian flows. Each of the isoenergetic orbit 
spaces is shown to be realized as a (co-)adjoint orbit of the symmetry group. In addition, 
use of the isoenergetic orbit spaces is discussed, In fact, a certain class of perturbed 
mc-Kepler problems are shown to induce dynamical systems on the iswnergetic orbit 
space. If the energy is negative, the generic isoenergetic orbit space is dfieomorphic with 
9 x 9, so that the Euler number of Sz x Sz provides the number of singular points 
for the reduced perturbed system, and in turn that of closed orbits for the perturbed 
hac-Kepler problem. 

1. Introduction 

A dynamical group S U ( 2 , 2 )  has long been studied in relation to the Kepler problem, 
in particular on the level of Lie algebras. That is, the generators of the Lie algebra 
su(2 ,2 )  Y so(2,4) have been extensively discussedsee Gyorgyi (1968, 1969), Barut 
and Bo- (1971), Tripathy et al (1975), Baumgarte (1978), Iosifescu and Scutaru 
(1980,1984), for example. Study on the level of Lie groups has been made by Souriau 
(1974) and well exhibited in Willemin and Sternberg (1977, 1990). Kummer (1982, 
1983, 1985) employed the dynamical group SU(2,Z)  in his series of papers on the 
perturbation of the Kepler problem. The present article aims to show that S U ( 2 , 2 )  
is also a dynamical group for the Mrc-Kepler problem, an extension of the Kepler 
problem. The symmetry groups for the MIC-Kepler problem have been studied in 
a series of papers by Iwai and Uwano (1986, 1988, 1991, 1991) both in classical 
and quantum mechanics. According to their results, the mc-Kepler problem has 
the same symmetry groups as the Kepler one; depending on whether the energy is 
negative, positive, or zero, the symmetry group is S0(4), S0,(1,4), or E(3) ,  where 
S0,,(1,3) is the identity component of the Lorentz group. This article shows that 
the double cover of the respective symmetry groups, i.e. SU(2)  x SU(2) ,  SL(2 ,C) ,  
and SU(2)  K R3, are realized as subgroups of SU(2,2).  In this sense, SU(2,Z) 
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can be interpreted as a dynamical group for the mc-Kepler problem. To show these 
results, the reduction method is profoundly useful. This is because the MIC-Kepler 
problem is naturally defined as a reduced system. 

The reduction method has another application in discussing isoenergetic orbit 
spaces. Indeed, by using the reduction procedure together with the momentum map 
associated with the symmetry group, all the isoenergetic orbit spaces are shown to be 
realized as (co-)adjoint orbits of the respective symmetry groups. 

The isoenergetic orbit space finds good use in discussing a certain class of 
perturbed mc-Kepler problems. In fact, a certain class of the perturbed MIc-Kepler 
problems gives rise to dynamical systems on the isoenergetic orbit space. In the case 
of negative energy, the topology of the isoenergetic orbit space provides information 
on the flow of the perturbed mc-Kepler problem. 

The organization of this paper is as follows: 
Section 2 contains a review of the reduction of the phase space T'(R4 - {0}), 

which is closely related with the KustaanheimG3tiefel (KS) transformation 
(Kustaanheimo and Stiefel 1965). By the use of a U(1) symmetry, the standard 
phase space (T*(R4 - {O}),d6) is reduced to the phase space (T*(R3 - {O}),up) 
with the symplectic form uIL other than the standard one. 

Section 3 deals with the momentum map associated with SU(2,2), which is a 
map of C4 to su(2,2)*, the dual to the Lie algebra su(2,2) of SU(2,Z). 

In section 4, the reduced phase space (T'(R3 - {O)),up) is shown to be 
symplectomorphic with a (co-)adjoint orbit of SU(2,2),  on which the Kirillov- 
KostantSouriau form is defined. Sections 2 to 4 are reviews of known results on the 
dynamical group SU(2,2),  which are, however, reformulated for the purpose of the 
study in following sections. 

Section 5 gives the symmetry groups for the Mrc-Kepler problem as subgroups of 
SU(2,2),  in each of the cases of negative, positive, and zero energies. To be strict, 
the double cover of each symmetry group is realized as a subgroup of SU(2,2), 
which is S U ( 2 )  x SU(2) ,  SL(2,C), or SU(2)  K R ~ ,  a semi-direct product, according 
to whether energy is negative, positive, or zero. 

Since all the orbits of the 
Hamiltonian flow on respective energy manifolds determine a group action, one 
can define an isoenergetic orbit space to be the quotient manifold by that group 
action. The reduction procedure and the momentum map associated with the 
respective symmetry groups are used to prove that the isoenergetic orbit space is 
symplectomorphic with a (co-)adjoint orbit of the symmetry group. In fact, according 
to whether the .energy is negative, positive, or zero, the isoenergetic orbit space 
is realized as a (co-)adjoint orbit of SU(2)  x SU(2) ,  SL(2,C),  or SU(2)  K R3, 
respectively. 

A certain class of 
perturbed Mrc-Kepler problems are defied on the isoenergetic orbit spaces through 
the reduction procedure. If the energy is negative, the ispenergetic orbit space is 
diffeomorphic with S2 x S2. The Euler number of S2 x Sz gives the number of 
singular points of the Hamiltonian flow on S2 x S2 and hence, in turn, provides the 
number of closed orbits for the perturbed mc-Kepler problem of negative energy. 

Section 6 deals with isoenergetic orbit spaces. 

Section 7 contains use of the isoenergetic orbit spaces. 

Section 8 contains concluding remarks on co-adjoint structure. 
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2. A review of the reduction of the phase space T‘ (R4 - {O}) 

We consider the phase space T*(R4 - {0}) = (R4 - IO}) x R4 with the cartesian 
coordinates (xj, yj), j = 1,. . . ,4, The standard symplectic form is defined to be 

A key to our reduction method is that the configuration space R4 := R4 - (0) is a 
U( 1)-bundle: 

U(1) - R 4  5 R 3  (2.2) 

where R3 := R3 - {O}. For x = (xj) E R4, the action of U(1) E SO(2) is defied 
to be 

x c T(t)x (2.3) 

where the matrix T( t )  is given by 

cos t  -sint 
sint cost T(t) = with R(t) = 

The projection ?F is realized by 

2 2 2 2  
q1 = 2(x1x3 + ~ 2 ~ 4 )  

where qkr k = 1,2,3, are the Cartesian coordinates of R3. Note that 

q 2  = 2(x1z4 - 1 2 x 3 )  4 3  = 2 1  + x2 - 1 3  - 14 (2.4) 

3 112 4 
r:= [ ~ q i ]  =EX;. 

k = l  j=1 

The fundamental vector field associated with the U(1) action is determined to be 

S d X )  = ( - x 2 r x 1 r - % x 3 ) T  (2.6) 

where the superscript T denotes the transpose. With respect to the standard inner 
product on R4, we can find vectors s k ( x ) ,  k = 1,2,3, so that so(x) and sk(x) may 
form an orthogonal basis in each co-tangent space Tj(R4): 

T 
%(I) = (X3,.Z4,x1>x2)T 

S 3 ( I )  = ( x 1 , x 2 r - X 3 , - - + 4 ) T .  

SZ(X) = (14, - x 3 ,  -x2, XI)  
(2.7) 

Now the U(1) action (2.3) is lifted to a symplectic action on T*R4: 

( x * Y ) c - ’ ( T ( ~ ) ~ , T ( ~ ) Y ) .  (2.8) 
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With this action is associated the momentum map CP : T*R4 - =( 1)' E R, which 
is found to be 

@(",Y) = -+zy1+ "1212 - "4Y3 + "3314 (2.9) 

where u(l)* is the dual to the Lie algebra u(1) of U(1). It is easy to see that Q is 
U( 1)-invariant. Following the Weinstein-Marsden reduction method (Abraham and 
Marsden 1978), we take a momentum space @-' (p )  for a faed p E R with p # 0, 
and form the reduced phase space CP-l(p) /U(l) ,  which proves to be diffeomorphic 
with T*R3 = R3 x R3. The natural projection 

rP : @-' (p)  - W 1 ( p ) / U ( 1 )  Y T*R3 (2.10) 

is realized by (2.4) together with 

(2.11) 1 pk=Gz/.Sk(X) ~ k=1,2 ,3  

where the dot denotes the inner product in R4. It is to be noted that for p # 0 
W 1 ( p )  does not intersect the excluded points {0} x R4 in R4 x R4. Let L~ be the 
inclusion map @ - l ( p )  3 T*R4. The reduced symplectic form uP is accordingly 
determined through 

.;U, = L;de (2.12) 

and shown to be expressed as 
3 

up = Ad% + pa 
k=l 

where 

(2.13) 

Thus we have reduced the phase space (T*R4,dS) to (T'R3,uP). See Iwai and 
Uwano (1986) for details. 

-1 
273 Q = -(qidqz A dq3 + qzdq3 A dqi + d q i  A dqz) . 

3. The momentum map associated with SU(2,Zf 

To deal with SU(2,2), it is convenient to introduce the complexvector space structure 
into R4 x R4. For ( r j ,y j )  given in the last section, set 

z1 = z1 + isz + x 3  + iz, 

23 = y1 + iy, + y3 + iy4 

zz = -zl - izz + z3 + iz4 

z4 = -yl - iy, + y3 + iy4 
(3.1) 

where i = G, the imaginary unit. Further, let 
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and 

w:= (z) (3.3) 

that is, w = (wj) is defined by wk = u k ,  wk+2 = vk ,  k = 1,2. Then, the standard 
symplectic form given in (2.1) is put in the form 

l 4  
, dB = - GjkdEi Adwk 

2i j , k = l  
(3.4) 

where 

G:= (Gjk) = diag(l,l,-1,-1). 

The dB is also expressed as 

(3.5) 
i dB = p ( G d w A d w * )  

where the superscript asterisk denotes the Hermitian conjugate, so that w* is a row 
vector with complex conjugate components. In view of this, we introduce a 1-form 

(3.6) 
i 
2 0 = -tr(Gwdw') 

which satisfies dO = de. From now on, we consider the phase space (@,do).  
The U(1) action given by (2.8) is now written simply as 

w +-+ eitw (3.7) 

which is, of course, symplectic. Its infinitesimal generator is given by iw (in vector 
notation), so that the associated momentum map is determined by evaluating (3.6) 
for iw: 

i 1 -tr(Gw(iw)*) = 2(Iwu11z+ lwz12 - Iw312 - I W . , ~ ~ )  = Q . 2 (3.8) 

Now we are to consider the group SU(2 ,2 ) .  By definition, a 4 x 4 complex 
matrix g is in U(2 ,2 ) ,  if and only if 

g*Gg = G (3.9) 

and further, a 4 x 4 complex matrix it is in u(2 ,2 ) ,  the Lie algebra of U(2 ,2 ) ,  if and 
only if 

G( = E'G. (3.10) 

It is an easy matter to show that (3.9) and (3.10) are equivalent to 

A*A - C*C = uo 
B'B - D'D = -uo 

A B  

A*B - C'D = 0 
(3.11) 
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and to 

E = ( :  i) with a = a * , d = d * ,  c = - b *  (3.12) 

respectively, where A, . . . , D and a,. . . , d are 2 x 2 complex matrices and U,, is the 
2 x 2 identity matrix. If one imposes conditions detg = 1 and &( = 0 in addition, it 
turns out that g E SU(2,2) and E su(2,2),  respectively. Here we introduce the 
inner product in u(2,2); for ic, iq E u(2,2), the inner product is defined to be 

-de, 17) = 4&(e*d. (3.13) 

On this inner product, the dual space u(2,2)* is identified with u(2,2).  
It is an easy matter to see from (3.6) and (3.9) that U(2,2) leaves 0 invariant, 

and hence is exact symplectic. For exp(itE) E U(2,2), we denote its infinitesimal 
generator by i tp  with P = C4. Then the function @(itp) determines the associated 
momentum map iJ through 

(3.14) O(icp) = ftr(ww*GE) = -y(J(w),[). 

Put another way, iJ : C4 H u(2,2)' E u(2,2) is given by 

J ( w )  = Gww'. (3.15) 

It is an easy matter to show that J is Ad*-equivariant: 

J(gw) = Adg-,.J(w). (3.16) 

According to the decomposition u(2,2) E su(2,2) @U( l), J(w) is decomposed into 
(Gww* - $@I4) + $@I4, where I4 is the 4 x 4 identity matrix. We denote by iK(w) 
the su(2,2)  component of iJ(w): 

K(w) = Gww' - ;@I4. (3.17) 

It is now clear that for g E U(2,2). 

K(gw) = Adg-1.K(w) @(gw) = @(w). (3.18) 

In the remainder of this section, we give the momentum map J in an explicit 
manner. In view of (3.12), we take a basis of u(2,2), tiet}, l = 0,1,. . . ,15, as 
follows 

(3.19) 
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where uj, j = 1,2,3, are the Pauli spin matrices. Note that eo is a base of ~ ( 1 )  
and el,. . . , ei5 form a basis of su(2,2). The components of the momentum map J 
are given by 

Jc(w) = -/(J(w),e2) f2 = O , l , .  . . ,15. 
Calculation shows that 

Jdw) = :((U, 4 - (U, 4)  = ;* 
Jj+,(W, = &L,UjU)  1 Jj+4(w) = -1 2( v , u p )  Js (w)  = $e(v,u) (3.20) 

J ~ + ~ ( w )  = ;Re(v,aju)  J ~ * ( W )  = tIm(v,u) J ~ + ~ ~ ( w )  = +I(v,o,.u) 

where U, U are vectors given in (3.2) and ( , ) denotes the Hermitian inner product 
in C2. Some of these functions are capable of dynamical understanding. Expressing 
Jl(w) and Js(w) in the variables (zj,yj), one has 

Jl(W) = :((U,.) + (U, 4)  

(3.21) 

(3.22) 

(3.23) 

which are Hamiltonians for the harmonic oscillator, the repulsive oscillator, and a 
free particle, respectively. We note further that 

(3.24) 

4. Co-adjoint orbits of SU(2,Z) 

In this section, we show that the reduced phase space T*R3 is realized as a 
(co-)adjoint orbit of SU(2,2), which fact will help us to understand that SU(2,2) 
can be a dynamical group of a certain class of dynamical systems on T*R3. 

For p + 0, we take a momentum space which is defined by 
(U, U) - ( v ,  v )  = 2p. Making use of this quadratic form, we can show that SU(2,2) 
acts transitively on W 1 ( p ) .  Take a point w0 = (JzTs,O,O,O)T in W1(p), where we 
have assumed that p > 0 without loss of generality. Then one has 

W'(!-L) = {gwo;g E SU(2,2)} 

K((D- l (p))  = {Ad,- l .IC(Wo);g E SU(2,2)}. 

(4.1) 

which is mapped, through the momentum map IC, to 

(4.2) 
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Here we have used (3.18). Equation (4.2) implies that K ( @ - I ( p ) )  is a (co-)adjoint 
orbit in su(2,2), which we denote by OK(=+ 

We wish to show that the orbit OK(,,,o) is diffeomorphic to the reduced phase 
space @-l(p)/U(l) .  Let L# be the inclusion map @ - I ( p )  -+ C4. We then 
consider the composite map 

K o L #  : @-'(p)  + O K ( w o ) .  (4.3) 

Suppose here that K ( w )  = K(w')  for w, w' E @-l (p ) .  Hence one has 
Gww* = Gw'w'", from which it follows that w and w' are related, for some 
t ER, by w' = eitw. This means that [w] = [w'] in @-l(p)/U(l), where [ ]  denotes 
the equivalence class. Thus K o L #  induces the diffeomorphism 

zp : @ - l ( P ) / W )  - OK(wo)  (4.4) 

which is defined by ??#([w]) = K O  L @ ( w ) .  In other words, one has 

We proceed to show further that zfl is a symplectomorphism. Any co-adjoint 
orbit is endowed with a symplectic form, called the Kirillov-KostantSouriau (KKS) 
form (Kiriiov 1976). The KKS form on OK(wo) is defied, at Y E OK(,,), to be 

(4.6) 
i 

w ( € Q > o Q ) ( ~ )  = --tr(~*[€,vl) 2 

where ice and iqQ are the infinitesimal generators of the (co-)adjoint action of 
expitf and expitq on Q := su(2,2), respectively, and iv E Q. From (3.18), the cQ 
is related to EP by 

K I f p ( w )  = with v = K(w),w E P = (4.7) 

where K, denotes the differential of K. For Ep and qp, and for w E @ - l ( p ) ,  we 
can prove, by using (4.6) and (4.7, that 

( K  Lp)*W(EP(W)3qP(W)) = w ( f Q ( v ) > T Q ( v ) )  

= I W G d w  A dw*)(Ep(W)r qp(w) )  = dQ(€p(w), q p ( w ) ) .  

Put another way, 

(IC o L#)*w = L;d6. (4.8) 

We are now ready to show that 
and (4.8), it follows that 

is a symplectic map. In fact, from (2.12), (4.5) 

- 
K E W  = U @ .  (4.9) 

Summing up the above discussion, we have the following. 
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Theorem 1.  For j i  # 0, the reduced phase space (@-'(p)/U(l),u,) = (FR3, up) 
is symplectomorphic with a (co-)adjoint orbit ( O K ( W O ) , ~ )  of SU(2,2) ,  where w 1s 
the KKS form. 

Since U(1) and SU(2,2) commute, T*R3 admits an SU(2,Z) action as a 
reduced phase space. Its infinitesimal generators are given as follows: the functions 
.Jt(w), = 1,2, . . . ,15, are all invariant under the U(1) action (3.7), and hence they 
project to functions J,,t on the reduced phase space through .Jfo~, = J l c , l ~ ~ B .  The 
Hamiltonian vector fields XJS,< associated with .J,,f turns out to be the infinitesimal 
generators of SU(2,2) on T*R3, since they are related to the Hamiltonian vector 
fields X,, by 

~ , * X d ~ , ( W ) )  = X,*,,(*,(w)). 

Hence, if a linear combination F, = Er cJ,,~ is taken to be a Hamiltonian, the 
system (T*R3,up, F,) has SU(2,2) as a dymanical group. 

In concluding this section, we make some remarks on the Kepler problem and 
(co-)adjoint orbits of SU(2,2). For the Kepler problem, a particular (co-)adjoint 
orbit of S00(2,4) is used, which is symplectomorphic with TtS3, the set of non- 
zero cotangent vectors to S3. Note here the isomorphism SU(2,2)/Z, % SOO(2,4) 
with 2, = {I4, -I4}. This orbit is well described in Guillemin and Stemberg (1977, 
1990) and Kummer (1982). Kummer (1982) showed that if the domain of @ is 
restricted to Cz - {0}, the reduced phase space W1(0)/U(l) is diffeomorphic with 
TfS3. He also made extensive use of (3.20) to show the isomorphism of T+S3 with 
the particular orbits mentioned above-see also Cordani (1986, 1987). 

5. The mC-Kepler problem and its symmetry groups 

In a series of papers, Iwai and Uwano (1986, 1988, 1991, 1991) have defied and 
analyzed the mc-Kepler problem as an extension of the usual Kepler problem. 
According to their results, the symmetry groups of the mc-Kepler problem are 
S0(4),  S00(3,  l), and E(3), depending on whether the energy is negative, positive, 
or zero. In this sectioR we show that these groups are all subgroups of SU(2,Z).  
Strictly speaking, the double cover of the respective groups, SU(2)  x SU(2). 
SL(2,C), and SU(2) K R3, are realized as subgroups of SU(2,Z). 

To start with, we give the definition of the mc-Kepler problem. Let H ,  be the 
Hamiltonian of the conformal Kepler problem on (T*R4,dO): 

After the reduction method in section 2, the conformal Kepler problem 
(T*R4,d0, H,) is reduced to the mc-Kepler problem (T*R3, up, H,)  by defmition, 
where H ,  is determined by H ,  o 1, = H ,  o ?F, and turns out to be expressed as 
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In order to study the symmetry of the imc-Kepler problem, we can use the 
reduction method. Our technique is to introduce the Hamiltonians 

F = f C y j  2 

(5.3) 

(5.4) 

(5.5) 
j 

where X is a positive parameter. Then these Hamiltonians are related to H ,  by 

4r H , + -  = A x - 4 n  ( 3 
4r H c - -  = R x - 4 n  ( 3 

(5.6) 

(5.7) 

4rHc = F - 4n. (5.8) 
Hence, the energy manifold H,-'(E) of the conformal Kepler problem coincides with 
that of the harmonic osdlator, the repulsive oscillator, or a free particle, depending 
on whether E is negative, positive, or zero. Moreover, the Hamiltonian flow of X ,  
coincides, up to parametrization, with that of XAA,XRA, or X,, according to whether 
E is negative, positive, or zero. In fact, one has 4rX, = XAA , X,, , or X ,  on 
H,-,(E),  according to E = -A2/& X2/8, or 0. From the definition of H p  and the 
reduction procedure, the energy manifold H;'(E) of the MIC-&pler problem is 
given by H,-,(E) nCP-'(p)/U(i), and therefore proves to be expressed as 

H,'(E) = AY'(4n) n CP-'(p)/U(l) (5.9) 
H;'(E) = RY'(4n) n@-'(p)/U(l) (5.10) 

H;'(E) = F - ' ( ~ K )  n w 1 ( p ) / U ( 1 )  (5.11) 

depending on whether E = -A2& X2/8, or 0. 
The symmetry groups for the mc-Kepler problem are those groups which act 

on the respective energy manifolds H i 1 (  E). Since the topology of the respective 
energy manifolds is independent of A, we fix X = 1 below. From (5.9) the symmetry 
group for E < 0 must be a subgroup of SU(2,2) which preserves A, and C P .  Since 
SU(2,2) already preserves C P ,  that subgroup should preserve A, = 2 4 ,  so that it 
must commute with the one-parameter subgroup generated by XA1, which is put in 
the form 

(5.12) 

The subgroup commutative with this is shown, after a calculation along with (3.11) 
and (5.12), to take the form 

G - : = (  ( o  A 0  B ) ; A , B ~ S U ( 2 ) } .  (5.13) 
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Here we have restricted the subgroup so as not to include (5.12). Thus we have 
obtained the symmetry group G- isomorphic to S U ( 2 )  x SU(2).  Since (3.7) and 
(5.13) commute, the group G- projects to act on the energy manifold H,’(E),  as 
is seen from (S.9). 

In the case of E > 0 and of E = 0, the same reasoning applies. For E > 0, the 
symmetry group should preserve R, and @. The oneparameter subgroup generated 
by X ,  = -U, is given by 

u,cosht -iu,sinht 
iu, sinh t U, cosh t (5.14) 

so that the subgroup commutative with this can be shown to be expressed as 

G+ := { ( - B  ;A*A- B’B = uO,A*B + B*A = O,det(A+ iB) = 1 . 
(5.15) 

The subgroup (5.14) has been excluded from (5.15). The group (5.15) is shown to be 
isomorphic with SL(2, C) having elements of the form A + iB. 

For E = 0, the symmetry group must preserve F = 5, - J8 and @, and therefore 
commutes with the one-parameter subgroup 

1 A B  

-it co (5.16) 

which is generated by X,. A calculation gives a subgroup commutative with (5.16) 
as follows: 

A’ A - B” B = U,, 

@ := { (-B A f 2 B  ) ’ A*B + B*( A + 2B) = 0, tr(A + B)-’B = 0 
A det(A + B) = 1 

(5.17) 

The subgroup (5.16) is not included in (5.17). In order to find what group this 
subgroup is isomorphic with, we introduce a mapping A,, which is defined for g in 
@ to be 

(5.18) 

Then (5.17) becomes 

(5.19) 
@:={(ti,” A + B ,  

From this it follows that G$ is isomorphic with a semi-direct product group 
SU(2) K R3. In fact, the isomorphism G$ - SU(2)  K R3 is given by 

where 4 2 )  denotes the underlying vector space of 4 2 )  and is isomorphic with R3. 
Surnrmng up the above discussion, we have the following theorem. 7 
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Zkorem 2. All the symmetry groups for the hac-Kepler problem are realized as 
subgroups of SU(2,2), which are G-, Gt, @ defined by (5.13), (5.15) and (5.17) 
for negative, positive, and zero energies, respectively. They are isomorphic with 
SU(2)  x SU(2), SL(2, C), and SU(2) K R3, respectively. 

Thus we have found all the symmetry groups of the Mrc-Kepler problem. It is 
to be noted that since the symmetry groups are subgroups of SU(2,2) and since the 
respective energy manifolds H;,( E )  are regarded as submanifolds of OK(wo) from 
theorem 1, the action of the symmetry group is considered as a (co-)adjoint action, 
so that SU(2) x SU(2)/Zz, SL(2,C)/Zz, and SU(2) K R3/2, with 2, = {I4,-&} 
should be taken to be the symmetry groups, which are isomorphic with S0(4), 
S0,(1,3), and E(3), respectively. 

The Hamiltonian H ,  itself is not a momentum function for SU(2,2), but is 
a function of momentum functions; in fact, from (323, (3.24), and (5.1), H, is 
expressible as a function of J,  and J,, so that H p  turns out to be a function of 
J,,, and J,,* Further, all the associated functions, A,, R,, and F, are momentum 
functions for SU(2,2), which were given in (3.21), (3.22), and (3.23), respectively. 
In view of all these facts, we may interpret SU(2,2) as a dynamical group for the 
mc-Kepler problem. 

6. Isoenergetic orbit spaces 

According to whether E is positive, negative, or zero, the action of (5.12), (5.14), or 
(5.16) provides the Hamiltonian flows for H, within a change of parameters. Further, 
each action c o h u t e s  with the U(1) action (3.7, so that those Hamiltonian flows 
project to respective energy manifolds Hi1( E )  to determine the Hamiltonian flows 
for H,. We denote by Gt the Hamiltonian flow on H;'(E). 

The aoenergetic orbit space for the mc-Kepler problem then can be defined to 
be H;'(E)/G? In this section, we will show that the isoenergetic orbit spaces are 
(co-)adjoint orbits of the respective symmetry groups. 

We start with the case of E < 0. For the group G- given by (5.13), we denote 
its Lie algebra by 4-, which is isomorphic with 4 2 )  @ 4 2 ) :  

Then the inner product (3.13) for E = cl @ Ez and q = q1 @ q2 is put in the form 

r ( E 3  7 )  = ;&T(€;lll) + +(€;712) (6.2) 

which induces the inner product on 4-,  and thereby 4- and its dual are identified. 
Further, the function (3.14) turns into 

$tr(ww*Gf) = $tl(uu*<, - vv*&J. (6.3) 

From (6.2) and (63), the momentum map associated with G- ". SU(2)  x SU(2), 

iK- = iKi  @ iK; : C4 = Cz x Cz - g- E ~ 4 2 )  @ su(2) 
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is found to be 

together with 

ICL(U) = uu*- ~ ( u , u ) u a  IC<(*) = -vv* + ;(v,")ua. 

Clearly, K -  = Ki 63 K; is Ad-equivariant. 
We are ready to study the isoenergetic orbit space H;'(E)/G,  for E < 0. 

From (5.9), H;'(E) /G,  turns out to be given by A ; ' ( 4 ~ ) n @ - ~ ( p ) / U ( l )  x U(1), 
where U ( 1 )  x U(1) is the product group of (5.12) and (3.7). Note here that A, 
and @ are the momentum maps associated with (5.12) and (3.7, respectively. Hence 
this isoenergetic orbit space is regarded as the reduced phase space by the group 
U(1) x U(1) .  We denote the natural projection and the isoenergetic orbit space by 
T; and M i ,  respectively: 

T; : ~ 3 4 ~ )  n @ ( p )  -+ M; := AF'(4n) n @ - I ( ~ ) / U ( I )  x ~(1). (6.5) 

As is easily shown, the manifold AT'(4n) n @ - I ( p )  is determined by the conditions 
(U, U) = 4n f ,U and (v, v )  = 4n - p, where p and K must satisfy the condition that 
4n - 2 0. If 4n - 1 ~ 1  > 0, Ai'(4n) n @-'(,U) is diffeomorphic with S3 x S3, so 
that it admits a transitive action of S U ( 2 )  x SU(2).  Therefore one has 

A;'(4n) n @-'(PI = {(guo, hva);(g, h )  E SU(2)  x SU(2) )  

where uo = ($ii?'TT,O)T and ea = (&=jT,O)T. Applying the momentum map 
K- = KL 63 Ki to this, we obtain 

K-(A;'(4~)n@-'(p)) = {Ad,KJuo)@AdhK;(vo); (g ,h)  E S U ( 2 ) x S U ( 2 ) } .  

This implies that the image of IC- is an adjoint orbit in 4 2 )  63 su (2 ) ,  which we 
denote by U-. 

Letting L; be the inclusion map: Ay'(4n) n @-'(,U) - C2 x Cz, we consider, 
like (4.3), the composite map 

(6.6) 

Suppose here that the map (6.6) has the same image for (.',U') and (u,v),,so 
that u'd* = uu* and v'd* = vu'. Then one has U' = e"u, and v' = elsv 
for some t , s  E R Let us here be reminded that the U(1) action (3.7) can be 
written as U H eiru, v t3 eirv, and that the action of (5.12) is expressed as 
U Y eiuu, v c e-iuv. Hence the U(1) x U(1) action is put in the form 

K -  o L; : AT'(4n) n @-'(/A) i U-. 

V .  
i(r-r) ,i(r+")u v w e  

Changing the parameters by U + 7 = t ,  7 - U = s, one has U Y eitu and c-) e%. 
From this it turns out that Ki(u') = Kc(u)  and Ki(v') = &(e) imply that 
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[ ( u ' , ~ ' ) ]  = [(U,.)], where [ ] denotes the equivalence class by the U(1) x U(1) 
action. Thus one has a diffeomorphism 

- 
K; : A;'(~K) n W'(p)/U(l)  x U(1) --+ U- (6.7) 

which is determined by Z;([(U, w)]) = K -  o L ~ ( U , V ) .  Put another way, 
I 

K; o ?c; = K -  o L; . (6.8) 

We can prove that E; is symplectomorphic. To show this, we follow the same 
methcd as in section 4. First we note that the standard symplectic form (3.5) can be 
written as ' 

(6.9) 
i 
2 dB = -tr(dU A du* - dw A dw*) 

and that the KKS form on the (a-)adjoint orbit U- is defied at U E U- to be 

w - ( E q , ~ q ) ( u )  = - ~ t r ( 4 [ E i > ~ i l )  - 5tr(4[[E2,~l)  (6.10) 

where E = El fB E2, q = q1 fB q2, U = u1 @ U, with E l , .  . . , u2 being 2 x 2 traceless 
Hermitian matrices. Definition (6.10) is the restriction of (4.6) to U-. Then from 
(6.4), (6.9), and (6.10) together with U = K-(w), we can prove, like (4.8), that 

i 1 

( K -  o L;)*w- = (Lp)*dS. (6.11) 

Equations (6.8) and (6.11) are put together to give 

(Z;)*w- = 0- P (6.12) 

where Q; is the reduced symplectic form which is defied on the reduced phase 
space M; through (?c;)*u; = (&;)*do. 

We proceed to the case of E > 0. The Lie algebra of the group (5.15) is given 
bY 

(6.13) 

which is isomorphic with s@, C) by the map iE r* i(tl + E* ) .  For is and iq in G+, 
the inner product (3.13) is restricted to induce 

~ ( E , v )  = *(Eiqt + G q 2 )  (6.14) 

which equips G+ with an inner product, and thereby Gt and its dual are identified. 
Further, for it E G+, the function (3.14) reduces to 

9 'tr(ww*G() = +tr((uu' - vw*)cl + (uw* + wu')E2). (6.15) 
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Hence, the momentum map associated with the group G+ Y SL(2,  C), 

iK+ : C4 - Gt Y s t ( 2 ,  C) 

is expressed as 

(6.16) 

where 

U = uuf - vv* v = uv* + vu*. 

As is easily shown, Kt is co-adjoint-equivariant for G+ and invariant for U(1): 

K+(gw)  = Adg-,.Kt(w) Kt(ei'w) = K t ( w ) .  (6.17) 

We turn to the isoenergetic orbit space. From (5.10) it follows that H;'(E)/G, 
for E > 0 is given by R;'(4n) n @-'(p)/R x U(1), where R x U(1) is the product 
group of (5.14) and (3.7). Note here that -R, and @ are the momentum maps 
associated with (5.14) and (3.7), respectively. Hence the isoenergetic orbit space is 
viewed as the reduced phase space by the group R x U(1). We denote the natural 
projection and the isoenergetic orbit space by T: and M,f ,  respectively: 

T: : RC'(4n) n @&'(p )  -+ M,' := RT'(4n) n @-'(p)/R x U(1). (6.18) 

We know already that the group G+ given by (5.15) acts on Rr'(4n) n @-l (p) ,  
since G+ preserves R, and @ from the definition. We now show that U(1) x G+ 
acts transitively on that manifold. Take a f i d  point (U,,, vo) and an arbitrary point 
(U, v )  of R;'(4n) n @-'(p),  where 

@+i& i d 5  
uo= ( ) v o = f i ~ ( - o  ) 

For (U, v), we set 

Then U/ and v' satislj 

(u',u') - (v',v') = 1 (U',.') + (U',.') = 0.  

Let A and B be two 2 x 2 matrices which have U' and v' as the first-column vector, 
respectively, and suitably chosen second-column vectors so as to form an element of 
the group (5.15). It then follows that 

(6.19) 
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The coefficient of the right-hand side of (6.19) has the absolute value one. This 
equation is what we wanted to show. From (6.19), we obtain 

R;'(4t~)n@-'(p) = {eitgwo;gE Gt} 

where wo = (z;) .  Applying the momentum map K+ to this set and using (6.17), we 
are led to 

Kt(R;'(41c) n a-'(@)) = {Ad,-,.Kt(w0);g E Gt}. (6.20) 

Equation (6.20) implies that the image K+(Ri1(4rc) n @-' (p ) )  is a (co-)adjoint 
orbit of G+ E SL(2, C), which we denote by U+. 

Letting 6; be the inclusion map R ; ' ( ~ K )  n @-'(p) -+ e, we consider the 
composite map 

Kt o L: : R;'(~K) n @-' (p )  --i Ut. (6.21) 

Suppose here that K+o~: (u , v )  = X+o~:(u ' ,v ' ) ,  so that uu*-vw* = u'u'*-v'w'* 
and uv" + vu* = u'v'" + v'u'*. Then it turns out that (U, v) and (U', v') must lie in 
the same orbit of the product of the groups (3.7) and (5.14). Hence Kt o L: induces 
a diffeomorphism 

- 
K,' : R;'(~K) n @ - ' ( p ) / ~  x u(1) - U+ (6.22) 

which satisfies 

Et o T: = K+ 0 L: .  (6.23) 

In the same manner as that for z;, we can prove that z$ is symplectomorphic. 
Applied for iv, it, ill E Bt, (4.6) provides the KKS form on the co-adjoint orbit Ut, 
which is expressed, at U E U+, as 

ut(EQ,vQ)(v) = - i@(4(El ,vl l -  [Ez,77z1)+~I(IE1,v21 t [E2,vll)) .  (6.24) 

Then, by use of (6.9) and (6.24) together with v = K+(w), we can show that 

(Kt o ,:)*ut = (~:)*d6. (6.25) 

Equations (6.23) and (6.25) are combined to yield 

(z;)*u+ = U: (6.26) 

where U: is the reduced symplectic form on the reduced phase space M$, which 
form is defied through (T;)*U; = (&:)*de. 

We come to the last case of E = 0. According to (5.18), it is convenient to 
introduce the new vectors 

1 1 u ,=- (u -v )  v , = - ( u + v ) .  Jz Jz 
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Put another way, w, := (t:) = Sw.' Then the 1-form 0 given by (3.6) is rewritten 
as 

(6.28) 
i i 
2 2 0 = -tr(G,w,d(w,)') = -tr(v,du; + usdv,*) 

where 

The Lie algebra of (5.19) is given by 

(6.29) 

which is isomorphic with a semi-direct sum of 4 2 )  and S@), su(2) su(2), 
where su(2) denotes the underlying vector space of 4 2 ) ;  the isomorphism i s x n  

- 

bY 
- 

For is E G;, the function (3.14) takes, in turn, the form 

$tr(wSw;G& = $tr((u.v: +.,U:)(<, + &) - 2u,u',E2) . (6.30) 

The momentum map associated with e, should be determined through (6.30). To 
this end, we have to think of the inner product on @. For it, iq E G:, the inner 
product (3.11) is reduced to 

Y(t,V) = :t'((€lfEz)'(ol+1Tz)+2€;~2).  

Whiie this equips Gt with an inner product, it is not suitable for ow purpose. We 
choose to take the inner product defined, for i t ,  iq E &, to be 

ztr(€G,v) 1 = -tr((S1 + F2)% + E d %  + v2)) . (6.31) 

With respect to this inner product, @ and its dual are identified. Then, Erom (6.30) 
and (6.31), the momentum map associated with e, E SU(2)  K R3, 

K O  : c4 3 G: = su(2) CB, 4 2 )  

is expressed as 

where 

w, = us.: U,  = usv: t .,U:. 
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This momentum map is shown to be Ad-equivariant for and invariant for U(1): 

Ko(gw,) = A d , ~ ~ ( w , )  Ko(eirw,) = K O ( W , ) .  (6.33) 

Now the isoenergetic orbit space H;'(E)/G, for E = 0 is shown from (5.11) to 
be F-'(4n)nQ,-'(p)/Rx U(l), where Rx U(1) is the product group of (5.16) and 
(3.7), each of which is transformed into 

( 2 z 0  :o) and eit (2 :o) (6.34) 

respectively, with respect to the variable w8. We here note that 

F =  L( 2 %>US) Q, = 2 ( % > % )  t (W8,US)) 

and also that 2F and Q, are the momentum maps associated with the respective 
groups written in (634).  Thus the isoenergetic orbit space is looked upon as the 
reduced phase space by the group R x U(1). We denote the nahual projection and 
the isoenergetic orbit space by T: and M:, respectively 

T: : F-' (4K)  n ~ , - l ( p )  3 14: := F - ' ( ~ K )  n @ - l ( p ) / ~  x ~ ( 1 ) .  (6.35) 

Clearly, the manifold F - ' ( ~ K )  n Q,-'(p) is determined by the conditions 
(u,,u,) = 8n and (u,,v,) t (w,,u,) = 2p.  Hence the group 0, given in (5.19) 
is found to act on it. We will show that this action is transitive. Take a fvred point 
(uo,vO) and an arbitrary point (u,,u,) of F - ' ( ~ K )  n Q,-l(p), where (uo,vo) is 
given by 

We here defme two vectors U' and V' to be 

2 a - b  1 b 1 
za2 us + %% 2a2 2a v' = -U - -vs U' = - 

We then choose 2 x 2 matrices A and B so that the first-column vectors of A and 
B may be U' and v', respectively, and further that A and B may satisfy, along with 
suitably chosen secondcolumn vectors, the conditions in (5.19). Then one has 

A t B  0 
( - 2 B  A + B ) ( z : ) = ( z , 8 ) .  

This proves the transitivity, as is wanted. Thus we obtain 

F - ' ( 4 ~ )  n Q,-'(P) = { p 0 ; g  E Go,} 

where wo = (3. Applying the momentum map (6.32) to this set resula in 

Ko(F-'(46) n %-'(/A)) = {Ad,Ko(wo);g E GO,}. (6.36) 
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5 SU(2) K R3, which 

Writing L: for the inclusion map: F - ' ( ~ K )  n @-' (p )  -* C4, we consider the 

This shows that the image of K" is a (co-)adjoint orbit of 
we denote by U". 

composite map 

K" o LE : F-' (~K)  n @-l(p) - U". (6.37) 

- - U,.: and U;.: + viu: = uBv: +.,U:. Then we can show that ( u ' , , ~ : )  
Suppose now that K" o L ~ ( U ~ , W ~ )  = K" o LO,(.',, vi). In other words, one has 

and (U,, w,) lie in the same orbit of R x  U( l ) ,  that is, they are related by the action 
of (6.34). Hence K" o L; induces a diffeomorphism 

u l l  

: F - ' ( ~ K )  n @ - ~ ( P ) / R  x u(1)  3 U 0 (6.38) 

which satisfies 

F: o = ~ " 0  L E .  (6.39) 

We are to show that z: is symplectomorphic. To this end, we first have to 
provide (3" with the KKS form. In keeping with the altered inner product (6.31), the 
KKS form on U" is taken, at v E U", to be 

i 
W " ( ~ Q >  'V$)(v) = -Tb(vGs[S, d )  

=itr((.l+v~)([E~,~l+~1721 + [ S ~ + E Z , ~ ~ I ) + ~ ~ I E ~ + E Z ~ ~ ~ + ~ Z I ) .  
(6.40) 

Further, note that the symplectic form on C4 is expressed, from (6.28), as 

(6.41) i 
2 dB = -tr(dv, A du: + dus A dv:) . 

By using (6.40) and (6.41) together with U = K"(w*), we can prove that 

( K O  o L;)*w" = (L;)*dt?. (6.42) 

Equations (6.39) and (6.42) are used to yield 

(z;)*w" = U" P (6.43) 

where ut is the reduced symplectic form defmed on the reduced phase space A4: 
through (=:)*U: = (Lt)*de. 

Theorem 3, All the isoenergetic orbit spaces of the Mrc-Kepler problem are 
(co-)adjoint orbits of the respective symmetry groups; the isoenergetic orbit space 
for negative, positive, and zero energies are realized as a (co-)adjoint orbit of G- E 
SU(2)  x SU(2) ,  of G+ 5 SL(2 ,  C), and of GO E S U ( 2 )  #R3, respectively. Further, 
as reduced phase spaces, those isoenergetic orbits spaces are symplectomorphic with 
respective (co-)adjoint orbits endowed with the KKS form. 
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7.  Perturbed hac-Kepler problems 

We consider a class of perturbed MIc-Kepler problems, which are compatible with 
the group theoretical treatment. Let us be given a perturbed Hamiltonian on T*R4, 

H F )  = H ,  + (7.1) 
where H, is the Hamiltonian of the conformal Kepler problem given in (5.1). We 
assume further that N(') is in normal form with H,, { H c ,  N ( e ) }  = 0, and invariant 
under the U(1) action. Then the Hamiltonian (7.1) is reduced to 

Hf) = H ,  + eN(') P (7.2) 
where Hf) and N t )  are reduced functions determined through H f ) o ~ ,  = Hc (E) O L ~  

and N g )  o r, = N(E)  o L,, respectively. Further, H ,  and H F )  prove to be in normal 
form, {H,, H t ) }  = 0, as a consequence of {H,, H?)} = 0, where the Poisson 
brackets of the reduced functions are taken with respect to the reduced symplectic 
form U,. Hence the Hamiltonian flow for Hf) runs on the energy manifold H;'( E) .  
Further, since the flow for H t )  and for H, commute, the flow for H g )  induces a 
flow on the isoenergetic orbit space H;'(E)/G,. 

In the case of E < 0, the isoenergetic orbit space is a (co-)adjoint orbit of 
G- 2 S U ( 2 )  x SU(2) .  Since a generic (co-)adjoint orbit of SU(2)  x S U ( 2 )  
is diffeomorphic with Sz x S2, the perturbed Hamiltonian H F )  defines a flow on 
Sz x S2.  The Euler number of 9 x S2, equal to four, gives the number of singular 
points of the flow, which in turn is the number of closed orbits for the perturbed 
mc-Kepler problem H t )  with negative energy. For the perturbed Kepler problem, 
this result is already known and has been given by Moser (1970). 

We now consider the perturbed Hamiltonian induced on the isoenergetic orbit 
space. Let us be reminded that the Hamiltonian H ,  can be switched to A, when the 
energy manifold H,-'(E) for E < 0 is taken into account (see (5.6)). Further, note 
that 4rXHc = X,,  on H;*(E). Therefore, a perturbed Hamiltonian H?) which 
is in normal form with H, and hence invariant under the flow exp(tX,) should 
be invariant under the flow of exp(tX,,), the action of (5.12). Thus H,(C) must be 
invariant under the action of the product group U(1) x U(1) of (3.7) and (5.12), 
when restricted on H;'(E) and therefore on H;l(E)n@-'(p) .  The U(1) x U(1) 
invariance makes H ? ) I H ; ~ ( E )  n ~ - 1 ( p )  project to a function on the isoenergetic 
orbit space M; (see (6.5)), which function we denote by HF)- .  Incidentally, since 
Mi is diffeomorphic with a (co-)adjoint orbit in 8- E 4 2 )  @ su(2), Hf)- must 
be a function of K-(w) (see (6.8)), so that it becomes a function of tr(IC-(w)em) 
with e, a basis of E-. Thus HP)-  is a function of tr(IC<(u)uj) and tr(K;(v)u,), 
where uj are the Pauli matrices. Hence it can be expressed III terms of Jjtr and 
Jjt4, j = 1,2,3, given in (3.20). 

In the positive- and zero-energy cases, perturbed Hamiltonians are also obtained 
in the same manner. For E > 0, the perturbed Hamiltonian Hf)' on the 
isoenergetic orbit space M$ must be a function of IC+(w),  and hence of t r ( U u j )  
and tr(Vuj) (see (6.15)), so that it can be expressed in terms of Jjtl + Jj+4 and 
J j q ,  j = 1,2,3. 
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For E = 0, the perturbed Hamiltonian H f "  on the isoenergetic orbit space ME 
should be a function of Ko(w,), and hence of tr(U,oi) and tr(W,uj) (see (6.30)), 
s o t h a t i t ~ a n b e w r i t t e n i n t e r m s o f J ~ + , + J ~ + ~ a n d J ~ + , - J ~ + ~ - Z J ~ + ~ ,  j = 1 , 2 , 3 .  

8. Concluding remarks 

In thii section, we make remark on the co-adjoint structures studied in sections 4 
and 6. Each of those co-adjoint structures is a specialization of the following theorem 
in part. 

Theorem 4. Let ( M ,  w )  be a Hamiltonian G = H x K-space, where w is a symplectic 
form on M ,  and H and K are connected Lie groups. Let +H : M -* 'H* @X:* 
be the equivariant momentum maps associated with the H x K action, where 'H and 
X: are Lie algebras of H and K, respectively, and 7.1' and iC* are their duals. Assume 
that p E X:* is a regular value of .$K, and the reduced phase space + k l ( p ) / K p  is a 
manifold, where K p  is the isotropy subgroup of K at p. Assume further that H x Ii; 
ac!s transitively on +kl(p).  Then + H ( + 2 1 ( p ) )  is a co-adjoint orbit U of H, and 
+H : +E1@) -* 0 projects to the quotient to define a symplectic covering map 
FH : + E 1 ( p ) / K p  i U, where U is considered as a symplectic manifold equipped 
with the Kirillov-KostantSouriau form. 

This theorem is stated in Kummer (1983). See also Iwai (1990) for a brief proof. 
In the latter paper, another example of interest is described. 

In section 4, we have only to apply this theorem with IC = U(1) and 
H = SU(2,Z). It then follows that Fp given by (4.4) is a symplectic covering 
map. We have already shown that Fp is a symplectomorphism. 

In section 6, theorem 4 should be applied for pairs K = U(1) x U(1) and 
H = G- Y SU(2)  x SU(2) ,  K = R x U(1) and H = G+ E SL(Z,C),  and 
IC = R x U(1) and H = Go E SU(2)  K R3. Our results in section 6 are that the 
symplectic covering map stated in the theorem is indeed a symplectomorphism for 
the respective pairs of H and IC. 

References 

Abraham R and Marsden J E 1978 Foundalions ofMeckanics (Reading, MA: BenjamirdCummings) (2nd 

Barut A 0 and Bomzin G L 1971 J. Math. Phys. 12 8416 
Baumgarte J 1978 J. Reine An& Mafh. 301 59-76 
Cordani B 1986 J. Math. Phys. 27 2920-1 
- 1987 Le& Malh. Phys. 13 79-82 
Guillemin V and Sternberg S 1977 Geomeaic Asympfofics (Providence, R I  American Mathematical Society) 
- 1990 VariafiOM on a Them by fipler (Providence, RI: American Mathematical Society) 
Gy6& G 1968 N m o  Cimento A U 717-36 
- 1969 Nuovo Cimento A 62 449-74 
Iosifescu M and Smtaru H 1980 1. Mafk. Phys. 21 203W5 
- 1984 J. Math. Phys. 25 285642 
Iwai T 1990 J. Geom. Phys. 7 507-35 
Iwai T and Uwano Y 1986 3. Malh. Phys. 27 1523-9 - 1988 J. Phys. A: Math. Gen. 21 4083-104 
- 1991 Nuovo Cimento B 106 849-71 

h) 



630 T Iwai 

- 1991 "WO Cimenro B 106 1195-219 
Kirillov A A 1976 EIemenLr of UU Theory of Representalhns (Berlin: Springer) 
Kummer M 1982 Commun. Math. Phys. 84 13S.52 - 1983 J.  Math. Anal. 4 p I .  !U 142-94 
- 1985 Arch Rat. Mech. And, 91 55-82 
Kustaanheimo P and Stiefel E 1965 J. reine angew. Math. 218 204-19 
Maser J 1970 Commun. Pure Appl. M& 23 609-36 
Souriau J M 1974 a m p m a  Mathematica vol 14 (New York Academic) 
Tripathy K C, Gupta R and Anand J D 1975 J. Math Phys. 16 1 1 3 9 4  


